Crystal structure of triphenylphosphine sulfide diiodine; the first crystallographically characterised 1:1 molecular charge-transfer complex of a tertiary phosphine sulfide with diiodine

DALTON FULL PAPER

David C. Apperley,^{*a*} Neil Bricklebank,^{*,†,*b*} Sally L. Burns,^{*b*} David E. Hibbs,^{*c*} Michael B. Hursthouse^{*c*} and K. M. Abdul Malik^{*c*}

^a Industrial Research Laboratories, University of Durham, Durham, UK DH1 3LE

^b Division of Chemistry, Sheffield Hallam University, Sheffield, UK S1 1WB

^c Department of Chemistry, University of Wales Cardiff, Cardiff, Park Place,

PO Box 912, Cardiff, UK CF1 3TB

In CH₂Cl₂ solution, Ph₃PS and diiodine react to form a molecular 1:1 charge-transfer complex. The complex has been studied in solution using ³¹P-{H} NMR and UV/VIS spectroscopy. Single-crystal X-ray diffraction and solid-state ³¹P-{H} NMR studies of Ph₃PS·I₂ show that the molecular structure is maintained in the solid phase. The structure of Ph₃PS·I₂ is novel and contradicts previous results which indicated that a 1:1 (Ph₃PS:I₂) complex could not be isolated in the solid state. The I–I distance [2.823(1) Å] and the S–I distance [2.753(2) Å] in Ph₃PS·I₂ are comparable with those in charge-transfer complexes of related sulfur donors. However, the I–I distance in Ph₃PS·I₂ is shorter than that in Ph₃PS·I₂ reflecting the weaker donor power of the Ph₃PS towards diiodine. The NMR spectroscopic results on Ph₃PS·I₂ and the analogous Ph₃PO and Ph₃PS compounds indicate that the stability of the Ph₃PE·I₂ complexes increases in the order E = Se > S \geq O.

During the past decade there has been renewed interest in the structures, properties and reactions of dihalogen derivatives of organo Group $15^{1.2}$ and 16^{3-5} donors. These studies have identified several different structural archetypes and have established a general pattern of reactivity which is dependent not only on the dihalogen and the basicity of the donor, but also on the reaction solvent.

Dihalogen complexes of tertiary phosphine chalcogenides were first reported in the early 1960's by Zingaro and coworkers,⁶⁻¹⁰ who characterised the compounds using IR and UV/VIS spectroscopy. Zingaro's studies showed that all R₃PE (R = alkyl or aryl) compounds except Ph_3PS form 1:1 adducts with I₂, IBr and ICl, in both the solid state and in CCl₄ solution.⁶⁻¹⁰ Triphenylphosphine sulfide formed 1:1 complexes with these dihalogens in solution, but in the solid state the complex with diiodine was found to have an unusual 2:3 (Ph₃PS: I₂) stoichiometry. Zingaro and co-workers were unable to isolate a 1:1 complex between Ph₃PS and I₂ in the solid state, despite the fact that the adduct could be identified in solution.⁷ The structure of 2Ph₃PS·3I₂ has been determined¹¹ and represents the only structural data for a tertiary phosphine sulfide dihalogen complex. The structure (Fig. 1) consists of two Ph₃PS-I-I units linked by a third molecule of diiodine which is coplanar and collinear with the terminal iodine atoms of the Ph₃PS-I-I molecules.¹¹ The structure of 2Ph₃PS·3I₂ has been investigated using ¹²⁹I Mössbauer spectroscopy which indicated that the iodine bonds were polarised: $Ph_3PS-I^{\delta+}\cdots I^{\delta-}\cdots I-I\cdots I^{\delta-}\cdots I^{\delta+}$ SPPh₃.¹²

The nature of Ph₃PS-diiodine interaction in CCl₄ solution was re-examined by Sobczky and co-workers¹³ who observed the formation of a 1:1 charge-transfer complex. However, Kaur and Lobana¹⁴ reported that Ph₃PS formed a 2:3 (Ph₃PS:I₂) complex in CCl₄ and a 1:1 complex in CH₂Cl₂. The diphosphine sulfide Ph₂P(S)CH₂P(S)Ph₂ gave similar results, whereas (*p*-CH₃C₆H₄)₃PS formed a 1:1 [(*p*-CH₃C₆H₄)₃PS:I₂] complex in both solvents. These differences were attributed to the differing basicities of the donors.¹⁴

More recently, structural data have been reported for a

Fig. 1 Structure of 2Ph₃PS·3I₂

number of tertiary phosphine selenide diiodine complexes. Rudd *et al.*¹⁵ have studied the structures of the tetraiodo complexes, R_3PSeI_4 (R = morpholino or Me₂N), which are ionic [R_3PSeI]I₃. In contrast, Godfrey *et al.*¹⁶ have characterised the 1:1 complexes, Ph₃PSe·I₂, (Me₂N)₃PSe·I₂ and (Et₂N)₃PSe·I₂, all of which adopt molecular charge-transfer type structures.

The apparent inability of Ph_3PS to form a 1:1 complex with diiodine seemed somewhat anomalous and has prompted us to reinvestigate the interaction of tertiary phosphine chalcogenides and diiodine. Herein we describe the synthesis and solid-state structure of the elusive $Ph_3PS \cdot I_2$.

Results and Discussion

A compound of stoichiometry $Ph_3PS \cdot I_2$ was prepared by the direct reaction of equimolar quantities of triphenylphosphine sulfide and diiodine in dichloromethane. The UV/VIS spectrum of the resulting brown solution showed a single band at 436 nm, which corresponds to the blue shifted diiodine absorption in the 1:1 charge-transfer complex. This result is in good agreement with those obtained by previous workers.^{10,13,14} The solvent was then allowed to evaporate slowly producing a crop of large, red-brown crystals in quantitative yield. Single-crystal X-ray analysis of one of these crystals revealed that the compound has a molecular charge-transfer type structure.

We have also attempted to prepare the analogous Ph_3PSe and Ph_3PO compounds in CH_2Cl_2 . The adduct $Ph_3PSe\cdot I_2$ forms as large red-brown crystals, whose structure is identical to that reported recently for this compound by Godfrey *et al.* who prepared their $Ph_3PSe\cdot I_2$ in diethyl ether.¹⁶ This shows that for this

[†] E-Mail: N.Bricklebank@SHU.ac.uk

2
)

Fig. 2 X-Ray structure of $Ph_3PS \cdot I_2$

compound at least the structure adopted is independent of the reaction solvent. In contrast, $Ph_3PO \cdot I_2$ formed as a brown microcrystalline solid which readily lost diiodine, suggesting that in this compound the diiodine is only very weakly bound.

The structure of Ph₃PS·I₂ is illustrated in Fig. 2. Selected bond lengths and angles are listed in Table 1 together with the equivalent lengths and angles in 2Ph₃PS·3I₂ and Ph₃PSe·I₂ for comparative purposes. The I-I bond in Ph₃PS·I₂ [2.8230(11) Å] is shorter and the S-I bond [2.753(2) Å] longer than those in 2Ph₃PS·3I₂ [d_{I-I}, 2.838(1) Å; d_{S-I}, 2.729(2) Å].¹¹ These differences are directly attributable to greater polarization of the S–I–I bonds in $2Ph_3PS \cdot 3I_2$, which results from the interaction of this group with a second molecule of diiodine (Fig. 1).¹¹ The P=S distances in Ph₃PS·I₂ and 2Ph₃PS·3I₂ [$d_{P=S}$: Ph₃PS·I₂, 1.998(2) Å; 2Ph₃PS·3I₂, 2.007(3) Å¹¹] are almost identical and both are lengthened with respect to that in unco-ordinated Ph₃PS $[d_{P=S} 1.950(3) \text{ Å}]$.¹⁷ Conversely, the average P-C bond length in Ph₃PS·I₂ [1.806(5) Å] is shorter than that in Ph₃PS [1.817(8) Å].¹⁷ As expected, the S-I-I linkage is almost linear $[175.51(3)^{\circ} cf. 173.69(6)^{\circ}$ in Ph₃PSe·I₂ and 175.23(5)^o in 2Ph₃PS·3I₂]. The I-I bond in Ph₃PS·I₂ is lengthened with respect to that of molecular diiodine (2.667 Å),¹⁸ but is clearly within bonding distance when compared to the van der Waals' radius of diiodine (4.3 Å).¹⁹ Both the I-I and the S-I distances are consistent with those reported in diiodine complexes of related organo-sulfur donors.^{3,4} The I-I distance in Ph₃PS·I₂ is shorter than that in Ph₃PSe·I₂, consistent with Ph₃PS donating less electron density than Ph₃PSe·I₂ to diiodine.

The structure of $2Ph_3PS\cdot 3I_2$ revealed an intermolecular interaction between one of the phenyl rings and the iodine bound to the sulfur. These interactions resulted in a slight deviation in the S–P–C angles from those of a regular tetrahedron. In the present case also, the S–P–C angles show some deviations from the ideal tetrahedral angle, but these cannot be attributed to any short $I \cdots C$ contacts. In $Ph_3PS\cdot I_2$ (Fig. 3) the molecules

Table 2 NMR data for Ph₃PO·I₂, Ph₃PS·I₂ and Ph₃PSe·I₂

Compound "	$\delta P(ppm)^{b}$	
	Solution	Solid state
Ph ₃ PO	29.61	28.99
Ph ₃ PO·I ₂	30.20	31.20
Ph ₃ PS	43.36	46.37
Ph ₃ PS·I ₂	41.70	39.74
Ph ₃ PSe	35.36 (728)	37.91 (737)
Ph ₃ PSe·I ₂	30.60 (645)	26.06 (623)

^{*a*} Data for Ph₃PO, Ph₃PS and Ph₃PSe from ref. 20. ^{*b*} All ³¹P-{¹H} NMR data are referenced to external 85% H₃PO₄. Values in brackets correspond to ¹J(³¹P-⁷⁷Se) Hz.

Fig. 3 Molecular packing in $Ph_3PS \cdot I_2$, viewed along b

pack fairly loosely in the crystal and are held together by van der Waals forces. The shortest intermolecular contacts involving a pair of non-hydrogen atoms $[C(11)\cdots C(15) \text{ at } (\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z)]$ are 3.609(10) Å. As can be seen from Table 1, the bond angles in Ph₃PS·I₂, 2Ph₃PS·3I₂ and Ph₃PSe·I₂ are very similar. Godfrey *et al.*¹⁶ suggested that the deviation of the angles around the phosphorus in Ph₃PSe·I₂ is due to the retention of significant P–Se double bond character, and because the lone pairs on larger atoms tend to cause the angles between bonds to be appreciably smaller than the tetrahedral angle. Clearly, these arguments would apply equally well to both Ph₃PS·I₂ and 2Ph₃PS·3I₂.

The ³¹P-{¹H} NMR spectra of Ph₃PS·I₂, Ph₃PSe·I₂ and Ph₃PO·I₂ have been recorded in both the solid state and in CDCl₃ solution. The data are summarised in Table 2. The solution data for Ph₃PSe·I₂ concur with those reported previously for this compound.¹⁶ The solid-state and solution spectra each exhibit single signals, with reasonable agreement in chemical shifts, indicating that each compound adopts the same structure in both phases. The signals for Ph₃PS·I₂ and Ph₃PSe·I₂ are shifted to a higher frequency than those of uncomplexed Ph₃PS and Ph₃PSe.²⁰ The magnitude of the change in chemical shift between the diiodine and the free phosphine chalcogenide is greatest for the selenium complex, reflecting the enhanced donor ability of Ph₃PSe over Ph₃PS. The spectra of the selenium-containing complex show the expected satellites due to ³¹P–⁷⁷Se coupling with good agreement in the solution and solid-state values of $J(^{31}P-^{77}Se)$. Both the solid state and the solution coupling constants for Ph₃PSe·I₂, 645 and 623 Hz respectively, are much smaller than those observed for Ph₃PSe; reported values for $J(^{31}P-^{77}Se)$ are 728 Hz (CDCl₃ solution) and 737 Hz (solid).²⁰ The reduction in the size of $J(^{31}P-^{77}Se)$ is consistent with the shift in electron density from selenium to iodine leading to a lengthening of the phosphorus–selenium bond.²¹ The signal for Ph₃PO·I₂ is shifted only very slightly from that of uncomplexed Ph₃PO, confirming that any interaction between the donor and acceptor is very weak.

One difference between the spectra of the three complexes is the direction in the shift of the signal from the parent triphenyl phosphine chalcogen upon co-ordination of diiodine; the signals for $Ph_3PS \cdot I_2$ and $Ph_3PS \cdot I_2$ are shifted to higher frequency, whereas that for $Ph_3PO \cdot I_2$ is shifted to lower frequency. This disparity cannot be attributed entirely to the differences in the electronegativity of the chalcogen. Analysis of the sideband data for the complexes indicates that the shielding tensors are similar for the $Ph_3PS \cdot I_2$ and $Ph_3PS \cdot I_2$ complexes and that these are significantly different to that for $Ph_3PO \cdot I_2$. The same observation has been reported for Ph_3PSe , Ph_3PS and $Ph_3PO.^{22}$

We have also recorded the IR and Raman spectra of the three complexes. The v(P=E) bands in the parent Ph₃PE donors occur at 1190 (E = O), 637 (E = S) and 560 cm⁻¹ (E = Se).²³ Coordination of diiodine to the Ph₃PE molecule results in a decrease in the v(P=E) stretching frequency to 1175 (E = O), 590 (E = S) and 537 cm⁻¹ (E = Se). These results are in agreement with previous IR studies of these compounds.^{6,7,16} Zingaro⁷ reported that v(P=S) in 2Ph₃PS·3I₂ occurs at 590 cm⁻¹ which concurs with the value reported here for Ph₃PS·I₂, which has an identical P–S bond length. We were unable to observe the fundamental I–I vibrations in the complexes, which usually occur below 200 cm⁻¹, due to instrumental limitations. However, the Raman spectrum of each complex contains weak bands in the region 230–330 cm⁻¹ which are assignable to v(I–I) overtone bands.⁴

Conclusion

From these results it is evident that Ph₃PS forms a stable 1:1 charge-transfer complex with diiodine not only in solution but also in the solid state. Solid-state and solution ³¹P-{¹H} NMR spectroscopic studies show that the stability of triphenyl-phosphine chalcogenide diiodine complexes follow the order $E = Se > S \ge O$. Godfrey *et al.*,¹⁶ when comparing the structures of Ph₃PSe·I₂ and 2Ph₃PS·3I₂, suggested that Ph₃PS does not form a stable 1:1 complex because it is a weaker donor towards diiodine than Ph₃PSe. X-Ray and NMR data for Ph₃PS·I₂ and Ph₃PSe·I₂ show that Ph₃PS is indeed a stronger donor towards diiodine than Ph₃PS, and thus forms a more stable charge-transfer complex. However, the supposition that Ph₃PS and diiodine only form a 1:1 adduct in solution is clearly incorrect.

Experimental

Synthesis

Triphenylphosphine sulfide, triphenylphosphine selenide and triphenylphosphine oxide were prepared using standard literature procedures.^{9,21} Diiodine (Aldrich) and dichloromethane were used as received. The compounds reported here were prepared by direct reaction of the tertiary phosphine chalcogen and diiodine in dichloromethane. The synthesis of Ph₃PS·I₂ is typical: diiodine (0.86 g, 3.4 mmol), dissolved in dichloromethane, was added slowly to a solution of Ph₃PS (1 g, 3.4 mmol) in dichloromethane, with stirring. After *ca.* 4 h, the solution was removed to a fume cupboard and the solvent allowed to evaporate slowly, yielding the Ph₃PS·I₂ product as red-brown crystals (yield 1.8 g, 96%). M.p. 110 °C (Found: C, 39.4; H, 2.64. C₁₈H₁₅I₂PS requires C, 39.9; H, 2.76%). IR spectrum/cm⁻¹ (KBr disc) 1476m, 1432m, 1101s, 995m, 745s, 713m, 690s, 618m, 590s, 504m. Raman spectrum/cm⁻¹ 1183m, 1094m, 1025m, 997s, 744m, 634m, 616m, 589m, 337s, 275w, 264w, 249m.

Ph₃PSe·I₂. This compound was prepared in an identical manner to Ph₃PS·I₂. M.p. 120 °C (Found: C, 36.05; H, 2.4. C₁₈H₁₅I₂PSe requires C, 36.0; H, 2.41%). IR spectrum/cm⁻¹ (KBr disc) 1475m, 1433m, 1098s, 995m, 744s, 716m, 689s, 618m, 537s, 498m. Raman spectrum/cm⁻¹ 1183m, 1095m, 1025m, 997s, 614m, 539m, 341m, 331w, 254m, 238w.

Ph₃PO·I₂. Reaction of Ph₃PO with diiodine in CH₂Cl₂ yielded a brown microcrystalline solid which readily lost diiodine on standing. M.p. 102 °C. Elemental analysis of this compound consistently gave results high in carbon. IR spectrum/cm⁻¹ (KBr disc) 1482m, 1434m, 1175s, 1117m, 1090m, 996m, 755m, 720s, 617m. Raman spectrum/cm⁻¹ 1183m, 1092m, 1026m, 998s, 682m, 615m, 288w, 247m.

Elemental analyses were carried out by The University of Cambridge Elemental Analysis service and by MEDAC Ltd., UV/VIS spectroscopy was performed on a ATI Unicam UV2 instrument, IR spectra were recorded on a Mattson 4020 Galaxy series FT-IR. Raman spectra were recorded on a Renishaw Raman Microprobe spectrometer using a 632 HeNe laser.

Solid-state ³¹P CP-MAS spectra were obtained using a Varian UNITYplus 300 spectrometer at an operating frequency of 121.4 MHz. All the spectra were recorded using cross-polarisation, high-power ¹H decoupling and magic-angle spinning. Solution ³¹P spectra were recorded in CDCl₃ solution using a Bruker AC250, 250 MHz spectrometer. In all cases spectral referencing was with respect to an external sample of 85% H₃PO₄.

X-Ray crystallography

Single crystals of $Ph_3PS \cdot I_2$ suitable for X-ray work were obtained as described above.

Crystal data. $C_{18}H_{15}I_2PS$, M = 548.13, monoclinic, a = 12.618(2), b = 9.454(3), c = 15.930(6) Å, $\beta = 97.400(8)^{\circ}$, U = 1884.5(10) Å³ (by refinement of the diffractometer angles for 250 reflections within $1.94 \le \theta \le 25.14^{\circ}$), T = 293 K, space group P_{2_1}/n (no. 14), Z = 4, μ (Mo-K α) = 3.53 mm⁻¹, 7642 reflections measured, 2875 unique ($R_{int} = 0.0489$).

Intensity data were recorded on a Delft Instruments FAST TV area detector diffractometer by following previously described procedures.²⁴ The structure was solved by Patterson methods (SHELXS 86)²⁵ and difference syntheses, and refined on F^2 by full-matrix least squares (SHELXL 93)²⁶ using all unique data corrected for Lorentz and polarisation factors, and also for absorption effects (DIFABS).²⁷ Non-hydrogen atoms were refined anisotropically and the hydrogen atoms included in calculated positions (riding model) with U_{iso} tied to the U_{eq} of the parent carbons. The structure refined to final R1 [on F, $F_o > 3\sigma(F_o)$] = 0.0270 and wR2 (on F^2 , all data, 199 parameters) = 0.0572. Sources of scattering factors as in ref. 24. The diagrams were drawn with SNOOPI.²⁸ The calculations were done on a Pentium personal computer. Selected bond lengths and angles are given in Table 1.

CCDC reference number 186/910.

See http://www.rsc.org/suppdata/dt/1998/1289/ for crystallographic files in .cif format.

Acknowledgements

We are grateful to C. Paraskeva for her assistance in recording the IR spectra and Professor J. Yarwood and Dr. C. Sammon for their assistance in recording the Raman spectra.

References

- 1 F. Ruthe, W. W. du Mont and P. G. Jones, Chem. Commun., 1997, 1947; S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and J. M. Sheffield, Chem. Commun., 1996, 252; M. A. H. A. Al-Juboori, P. N. Gates and A. S. Muir, J. Chem. Soc., Dalton Trans., 1995, 1441; N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and J. M. Moreno, J. Chem. Soc., Dalton Trans., 1995, 2421; M. A. H. A. Al-Juboori, P. N. Gates and A. S. Muir, J. Raman Spectrosc., 1995, 26, 101; N. Bricklebank, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1993, 2261; N. Bricklebank, S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and P. J. Kobryn, J. Chem. Soc., Dalton Trans., 1993, 101; N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Chem. Commun., 1992, 355; S. M. Godfrey, D. G. Kelly, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Chem. Commun., 1991, 1163; W. W. du Mont, M. Bätcher, S. Pohl and W. Saak, Angew. Chem., Int. Ed. Engl., 1987, 26, 912; F. A. Cotton and P. A. Kibala, J. Am. Chem. Soc., 1987, 109, 3308.
- 2 H. C. Wang, E. J. Gaffney, C. R. Dybowski and A. L. Rheingold, J. Organomet. Chem., 1996, **512**, 21; N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and J. M. Moreno, J. Chem. Soc., Dalton Trans., 1995, 3873; L. J. Baker, C. E. F. Rickard and M. J. Taylor, J. Chem. Soc., Dalton Trans., 1995, 2895; N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A McAuliffe, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Dalton Trans., 1994, 175.
- 3 A. J. Blake, F. Cristiani, F. A. Devillanova, A. Garau, L. M. Gilby, R. O. Gould, F. Isaia, V. Lippolis, S. Parsons, C. Radek and M. Schroder, *J. Chem. Soc.*, *Dalton Trans.*, 1997, 1337; F. Freeman, J. W. Ziller, H. N. Po and M. C. Keindl, *J. Am. Chem. Soc.*, 1988, 110, 2568.
- 4 F. Cristiani, F. Demartin, F. A. Devillanova, F. Isaia, G. Saba and G. Verani, *J. Chem. Soc.*, *Dalton Trans.*, 1992, 3553.
- S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and S. Sarwar, J. Chem. Soc., Dalton Trans., 1997, 3501; S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and S. Sarwar, J. Chem. Soc., Dalton Trans., 1997, 1031; M. Arca, F. Cristiani, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, G. Verani and F. Demartin, Heteroat. Chem., 1997, 8, 139; Polyhedron, 1997, 16, 1983; F. Cristiani, F. Demartin, F. A. Devillanova, F. Isaia, V. Lippolis and G. Verani, Inorg. Chem., 1994, 33, 6315; F. Demartin, P. Deplano, F. A. Devillanova, F. Isaia, V. Lippolis and G. Verani, Inorg. Chem., 1993, 32, 3694.

- 6 R. A. Zingaro and R. M. Hedges, J. Phys. Chem., 1961, 65, 1132.
- 7 R. A. Zingaro, Inorg. Chem., 1963, 2, 192.
- 8 R. A. Zingaro and E. A. Meyers, Inorg. Chem., 1962, 1, 771.
- 9 W. Tefteller and R. A. Zingaro, *Inorg. Chem.*, 1966, **5**, 2151.
- 10 R. A. Zingaro, R. E. McGlothlin and E. A. Meyers, *J. Phys. Chem.*, 1962, **66**, 2579.
- W. W. Schweikert and E. A. Meyers, *J. Phys. Chem.*, 1968, **72**, 1561;
 J. W. Bransford and E. A. Meyers, *Cryst. Struct. Commun.*, 1978, **7**, 697.
- 12 H. Sakai and Y. Maeda, Bull. Chem. Soc. Jpn., 1987, 60, 1625.
- 13 F. Lux, R. Paetzold, J. Danel and L. Sobczyk, J. Chem. Soc., Faraday Trans. 2, 1975, 1610.
- 14 S. Kaur and T. S. Lobana, J. Inorg. Nucl. Chem., 1981, 43, 2439; J. Indian Chem. Soc., 1983, 60, 126.
- 15 M. D. Rudd, S. V. Lindeman and S. Husebye, *Acta Chem. Scand.*, 1997, **51**, 689.
- 16 S. M. Godfrey, C. A. McAuliffe, S. L. Jackson and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1997, 4499.
- 17 P. W. Codding and K. A. Kerr, Acta Crystallogr., Sect. B, 1978, 34, 3785.
- 18 I. L. Karle, J. Chem. Phys., 1955, 23, 1739.
- 19 N. N. Greenwood and A. Earnshaw, *The Chemistry of the Elements*, Pergamon, Oxford, 1984.
- 20 J. A. Davies, S. Dutremez and A. A. Pinkerton, *Inorg. Chem.*, 1991, **30**, 2380.
- 21 D. W. Allen and B. F. Taylor, J. Chem. Soc., Dalton Trans., 1982, 51.
- 22 J. B. Robert and L. Wiesenfeld, Mol. Phys., 1981, 44, 319.
- 23 G. Davidson, in *The Chemistry of Organophosphorus Compounds*, *Volume 2, Phosphine oxides, sulfides, selenides and tellurides*, ed. F. R. Hartley, Wiley Interscience, Chicester, 1992, p. 169.
- 24 J. A. Darr, S. R. Drake, M. B. Hursthouse and K. M. A. Malik, *Inorg. Chem.*, 1993, **32**, 5704.
- 25 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 26 G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.
- 27 N. P. C. Walker and D. Stuart, *Acta Crystallogr., Sect. A*, 1983, **39**, 158; adapted for FAST geometry by A. I. Karaulov, University of Wales, Cardiff, 1991.
- 28 K. Davies, SNOOPI, Program for Crystal Structure Drawing, University of Oxford, 1983.

Received 22nd December 1997; Paper 7/09121D